
Copyright 1995 by the American Institute of 1
Aeronautics and Astronautics, Inc. All rights reserved.

ACHIEVING REUTILIZATION OF SCHEDULING SOFTWARE THROUGH
ABSTRACTION AND GENERALIZATION

George J. Wilkinson, Richard A. Monteleone,
Stuart M. Weinstein, Michael G. Mohler, David R. Zoch

Loral AeroSys
7375 Executive Place, Suite 101

Seabrook, MD 20706
(301) 805-0433

G. Michael Tong
NASA

Mail Code 522
Goddard Space Flight Center

Greenbelt, MD 20771
(301) 286-3176

ABSTRACT

Reutilization of software is a difficult goal to achieve,
particularly in complex environments that require
advanced software systems. The Request-Oriented
Scheduling Engine (ROSE) was developed to create a
reusable scheduling system for the diverse scheduling
needs of the National Aeronautics and Space
Administration (NASA). ROSE is a data-driven
scheduler that accepts inputs such as user activities,
available resources, timing constraints, and user-
defined events, and then produces a conflict-free
schedule. To support reutilization, ROSE is designed
to be flexible, extensible, and portable. With these
design features, applying ROSE to a new scheduling
application does not require changing the core
scheduling engine, even if the new application requires
significantly larger or smaller data sets, customized
scheduling algorithms, or software portability. This
paper includes a ROSE scheduling system description
emphasizing its general-purpose features, reutilization
techniques, and tasks for which ROSE reuse provided a
low-risk solution with significant cost savings and
reduced software development time.

INTRODUCTION

Planning and scheduling is performed in many areas,
such as spacecraft scheduling, network
communications scheduling, student curriculum
tracking, equipment scheduling, air traffic planning,
and manufacturing. These applications share the
following common attributes:

a. Complexity. Resource allocation for
hundreds or thousands of activities may
involve timing and other constraints.

b. Limited resources. Conflict resolution rules
are needed.

c. Competing goals. Tradeoffs and
compromises are made to reach a satisfactory
solution.

d. Automated support. Computers can
produce schedules many times faster than
they can be produced manually, and can
reduce errors by checking the schedules.

e. Manual interaction. The user must remain
in control of the scheduling process, and
modify schedules generated by the computer.

f. Information display. A highly interactive,
graphical display can show complex
solutions to the user, who can then modify
the solutions as needed.

g. Rescheduling. Schedule changes may occur
at any time during the process.

Often, a software development effort is undertaken to
build a scheduling system for a new application. For
some situations, each new implementation typically
costs more than the previous ones, and is viable for
that specific application only [Brouchard, 1992].

This paper describes our approach to design the ROSE
software to be a reusable scheduling tool. To provide a
basis for subsequent discussion, an overview of ROSE
is presented first. Then, we discuss the software
system characteristics, including flexibility,

Copyright 1995 by the American Institute of 1
 Aeronautics and Astronautics, Inc. All rights reserved

extensibility, and portability, that promote and
facilitate software reutilization. A detailed case study
is provided for each software system characteristic.
Finally, future work and a summary are presented.

 3

OVERVIEW OF ROSE

ROSE is a generic scheduler that can be used to solve a
broad range of scheduling problems, including control
center applications that require interactive, real-time
control over scheduling operations. Because ROSE is
data driven and has built-in schedule development and
rescheduling capabilities, most of the scheduling
functions are already available. Custom reports and
algorithms can be added to ROSE. ROSE has been
demonstrated in a variety of scheduling applications
(refer to Table 1).

Table 1. ROSE Applications

SCHEDULING DOMAIN RESOURCES

Space-to-ground network
communications

- Tracking and Data Relay
Satellite (TDRS)
antennas

- Ground equipment

Data communications for
the Compton Gamma Ray
Observatory (GRO)
satellite

- TDRS antennas

Payload scheduling
scenario for the Upper
Atmosphere Research
Satellite (UARS)

- Science instruments
- Power
- Vibration

Aircraft scheduling and
pilot training for the
United States Air Force
(USAF)

- Aircraft
- Simulators
- Personnel
- Classrooms

Tanker aircraft
scheduling and student
management for the
USAF

- Aircraft
- Simulators
- Personnel
- Classrooms

Central Processing Unit
(CPU) Scheduling

- CPU jobs

Global communications
satellite network
scheduling

- Ground station antennas
- Satellite communications

ROSE is currently being integrated into NASA's
Network Control Center (NCC) to provide a major
capabilities upgrade with new requirements, such as
flexible scheduling [Moe, et al., 1994]. The NCC
schedules space-to-ground communications for NASA
spacecraft, such as the Space Shuttle. As a mission-
critical component of the space network, the NCC
demands a highly efficient schedule. We anticipate
significant cost savings will be achieved by reutilizing
ROSE instead of developing a custom scheduling

component or enhancing the current system to meet the
new requirements.

ROSE Timeline Manager Screen

The ROSE Timeline Manager screen shown in Figure
1 is the operator's graphical interface to the schedule.
Figure 1 is a black and white depiction; the actual
screen is in color. The Timeline Manager screen is
composed of three major sections: the menu bar, the
schedule display section, and the bottom display
section.

The menu bar, located near the top of the screen,
contains pull-down menus that allow users to access
ROSE functions, including loading, saving, and
editing schedules, generating electronic or hard copy
output, and calling the automated scheduler to create
schedules and resolve conflicts.

The schedule display section contains graphical plots
of scheduled activities, remaining resources, and other
time-related scheduling information. The buttons on
the left side of the graphical plots specify resources that
can be selected. Each row can display the scheduled
activities which use that resource. Each activity is
assigned a user-defined color. Several menu functions,
such as mark, annotate, cut, paste, scroll, zoom, and
reschedule, are available for manipulating timelines
and activities.

In addition to the activity plots, ROSE displays three
other plots in this area of the screen: timegraph, step,
and resource. A timegraph, displayed using white
rectangles, contains one or more time windows used to
characterize user events. A step plot provides more
detailed information about the scheduled activities. A
resource plot shows the remaining resources over time.

The various graphical items in the schedule display
section may be selected using the mouse. This
graphical point-and-click technique simplifies
scheduling and rescheduling, allowing functions to be
performed efficiently with a low risk of error.

The bottom display section provides detailed
information to support different operator actions. The
operator can view 3 out of 12 bottom displays at a time.
Some bottom displays provide feedback to the operator
during manual scheduling, while other displays show
summary statistics on resource utilization and the
number of scheduled and unscheduled activities.

 4

General-Purpose Features

The concepts of generalization and abstraction were
used to design and implement ROSE. By

generalization, we mean expanding an application-
specific requirement to

Figure 1. The ROSE Timeline Manager Screen

cover a known class of applications. For example,
many NASA applications have constraints, such as:

Activity X must be scheduled
within 3 hours after

Activity Y

This requirement was extended to the general case:

Activity X must [start or end]
[more than or less than or exactly]

< time duration >
[before or after] the
[start or end] of

Activity Y

By abstraction, we mean taking a requirement that
applies to one object in ROSE and applying it to
others. For example, cut and paste functions can be
applied to activities. Abstraction extends the design
and application of the cut and paste functions to other
items, such as timeline plots and scrolling lists.

 5

Unconstrained use of these principles can result in
increased software development cost and time.
However, appropriate application of these principles
can lead to lower life cycle costs. Our software
maintenance activities tend to focus on implementing
new capabilities rather than implementing (often
tedious and enthusiasm-draining) extensions to
existing capabilities.

The user interface is one feature for which we have
noted a particular lack of standardization and a desire
for custom development. Automated scheduling
systems are often used to replace an existing manual
system. Users typically want an interface that exactly
duplicates the paper forms used previously.

Table 2 lists some of the general-purpose features in
ROSE. For more information on ROSE, see
[Weinstein, 1993].

FLEXIBILITY

Several factors contribute to ROSE’s flexibility. First,
the scheduler uses the Flexible Envelope Request
Notation (FERN) scheduling language to specify
resources and event requests. The user can specify
both application-unique data and scheduling rules in
FERN, thus reducing the need to change code in
ROSE. Second, ROSE was designed to avoid
scheduling problem size limitations. Third, the user
interface can be configured to meet the needs of
various scheduling domains. Finally, ROSE supports
multiple operational modes for scheduling. Each of
these methods is discussed separately in the following
paragraphs.

The principal component of ROSE’s data-driven
capability is the FERN language. FERN provides a
robust request specification interface to the ROSE
scheduler, enabling application-unique knowledge
encoding. FERN defines the interface between the
users and the software scheduling system. It specifies
schedule requests, resources, scheduling goals, timing
constraints, and flexible start times and durations. The
FERN files created to model the scheduling application
are input to ROSE.

Figure 2 shows the input data types and relationships
that can be represented in FERN. A generic request is
used to specify repetitive events (e.g. an instrument
calibration is performed once per day). Generic
requests contain one or more activities to be scheduled.
Activities specify a sequence of steps to be scheduled,
each of which has a duration and requires resources.
Steps and activities are restricted by constraints. For

example, "commanding from the control center must
occur only between Acquisition-of-Signal (AOS) and
Loss-of-Signal (LOS)," is a constraint that restricts the
time window for sending commands. Timegraphs are
used to represent windows of time. For example, the
timegraph AOS_LOS might contain the list of AOS
and LOS times, and be used to represent all time
windows for commanding during the week. Goals
measure the quality of a schedule. For example, a goal
might specify that the scheduler should maximize the
use of a particular resource, or should schedule as
many activities as possible from a particular user.
ROSE will calculate the goal statistic and report the
results in a statistics display. Annotations allow
comments and other notes to be placed on the schedule.

The scheduling algorithms, memory management, and
data structures in ROSE are designed not to limit the
size of the problem that can be handled. Linked lists
are used so that data structures are dynamically
allocated in main memory, and sizes are limited only
by the amount of available virtual memory. For
example, ROSE supports any number of contingency
schedules, resources, activities, steps, graphical plots,
and schedule segments.

 6

Figure 2. FERN Data Types and Relationships

The Timeline Manager screen can be tailored by the
user to meet specific scheduling needs. ROSE has a
generalized plot capability. As described earlier, the
data may be displayed using four types of plots:
activity, step, resource, and timegraph. Also, the user

may bring up different sets of plots on the schedule
display section to view different aspects of the
scheduling problem. For example, one set of plots may
depict the schedule from the perspective of the
resources used for each activity; and another set of
plots may depict the schedule showing levels of
resource utilization over time.

Generic
Request

Activity

Step

Resource

Timegraph

Constraint

Annotation

Goal

Contains
a list of

Contains
a list of

Contains
a list of

Measures

Measures Described by

Restricted by

Restricted by
Contains

Table 2. ROSE General-Purpose Features

SCHEDULING
FEATURE

DESCRIPTION BENEFITS

Automatic
Scheduling

- Schedules are produced based on resource
availability, timing constraints, and other user
requirements.

- The computer produces schedules quickly.
- The computer checks for constraint violations

and resource conflicts.

Automatic
Rescheduling

- An artificial intelligence-based algorithm tries to
resolve conflicts automatically.

- The operator has an additional tool to resolve
conflicts quickly.

Manual
Scheduling
Tools

- Cut, paste, and drag functions are performed on
activities; and automatic constraint checking
detects any conflicts.

- "Lock" feature does not allow changes to specified
activities.

- An interactive display shows constraint violations
and resource conflicts at each location of the mouse
pointer as the mouse "drags" an activity across the
timeline.

- The operator controls the scheduling process.
- The automatic scheduler cannot move locked

activities, thus preventing inadvertent
schedule changes.

- The tool identifies the resources in conflict at
particular times.

Seamless
Scheduling

- If a schedule is produced once per week, the
transition between adjoining weekly schedules is
transparent.

- Activities crossing the schedule boundary are
automatically carried over to the next week.

- When the operator scrolls to the previous or
next week, the available scheduling
information is automatically loaded.

Generalized
Plots

- Activity, step, resource, and timegraph plots are
provided.

- The operator can view detailed data
graphically using different types of plots.

Full Visibility
Timeline

- All scheduled activities, including activities with
very short time durations, are displayed.

- The operator can view all activities using a
large time scale, such as 1 week (zoom out).

Selectable
Activities

- Items in the list, such as scheduled or unscheduled
activities, can be selected. Then, the selected item
can be edited; or detailed information on that item
can be accessed for viewing.

- A point-and-click technique accesses detailed
information quickly.

- This feature inserts, removes, or edits
activities easily.

Marking - Activities are assigned colors based on
characteristics such as: if in conflict, resource
used, or ground station used.

- Operators can assign desired colors to events
to make it easier to understand the schedule.

Interruptible
Scheduling
Process

- The operator can watch the schedule being created
and can interrupt the scheduling algorithm at any
time.

- The operator can make minor adjustments to
the schedule before the automatic scheduling
algorithm schedules low-priority activities.

"What -If"
Scheduling

- The operator can try different conflict resolution
strategies and rules, creating and saving many
schedules before selecting the best.

- Contingency schedules can be developed.
- The best schedule is selected from competing

strategies, heuristics, and algorithms.

Temporal
Constraints

- This mechanism restricts the times when activities
can be scheduled.

- Timing constraints are enforced (e.g., all
playback and commanding activities occur
between AOS and LOS).

Checkpoint/
Restart

- The scheduling process can be interrupted, and the
partial schedule can be saved and restored.

- Schedules can be built incrementally, saved,
and restored.

 7

Multiple operational modes, ranging from fully
automatic scheduling to fully manual scheduling, allow
the operator to choose the desired level of scheduling
support. The operator may begin scheduling by
manually placing activities on the schedule and locking
them in place. The operator may then execute the
software scheduling algorithm to complete the
schedule, which will take into account activities
already placed on the schedule. The scheduling
algorithm tries to create a conflict-free schedule
containing as many of the requested activities as
possible. The operator may then use one or more of
the manual scheduling tools to alter the schedule
created by ROSE.

Compton Gamma Ray Observatory - a Case Study in
ROSE Flexibility

The Compton GRO Spacecraft was deployed from the
Space Shuttle in early 1990. GRO uses NASA's
Tracking and Data Relay Satellite System (TDRSS) as
a communications link. The GRO Mission Operations
Center (MOC) transmits commands and receives
telemetry and scientific data from the GRO Spacecraft
through forward and return TDRSS Multiple Access
(MA) low data rate and Single Access (SA) high data
rate communications channels (see Figure 3). To use
TDRSS services, the GRO MOC generates TDRSS
service requests that are electronically transmitted to
the NCC in Greenbelt, MD. NASA's Flight Dynamics
Facility (FDF) provides GRO and other TDRSS
customers with User Antenna View (UAV)
information. This UAV information contains a list of
time windows that show when the GRO Spacecraft can
see (line-of-sight) one of the three geostationary
TDRSS satellites.

Currently, GRO personnel visually examine UAV data
to schedule requests for TDRSS services which can use
any one of three TDRSS satellites. This time-
consuming process can take over 4 hours per day.

In a recent prototyping effort, we successfully
reutilized ROSE to provide an automated scheduling
tool supporting the GRO MOC. On a Monday
morning, we met with GRO personnel to discuss their
scheduling needs and to obtain a sample week of FDF
UAV data. During the week, we built a translator to
convert the UAV data into the equivalent FERN format
(a timegraph), then encoded a model of the GRO
problem in FERN, and generated a custom report in
the format used by GRO. On Friday of that week, we
provided a demonstration that met most of their
scheduling needs. In 30 seconds, ROSE automatically
created a 7-day GRO contact schedule. Analysis by

GRO personnel indicated that ROSE created a viable
schedule.

The FERN scheduling language provided the flexibility
to represent the three major types of data used by GRO.
First, UAV data is converted into FERN timegraphs
(see Figure 4 for a list of potential contact times when
GRO can see a TDRS, and Figure 5 for the equivalent
FERN timegraph).

Second, TDRSS communication channels are
represented as resources with specific amounts. In this
application, however, the resources need a special
mask to show resource availability since GRO can see
only a particular TDRS at specific time windows. The
TDRSS communication channel plots (resource)
intersect with UAV data (timegraph) to create a new
FERN resource plot. Thus, FERN allows us to derive
new timegraphs and resources from previously defined
structures.

Third, FERN generic requests were created specifying
the frequency with which to schedule GRO events, the
time windows in which GRO events should be
scheduled, and the resource requirements. The GRO
scheduling heuristics were encoded into FERN without
changing the ROSE code. Scheduling heuristics
indicated that GRO first schedules all TDRS East MA
events, followed by TDRS West MA, TDRS Zone, and
finally, TDRS SA events during open UAV contacts.
An additional GRO scheduling requirement stated that
all events must be separated by a minimum of 2
minutes to allow for setup.

The GRO demonstration highlighted ROSE's ability to
produce schedule reports used to request TDRSS
services from NASA's NCC. FERN’s flexibility
allowed us to provide a solution quickly without
modifying the code. We reutilized the ROSE software
by designing the scheduling kernel to be loosely
coupled with the application-unique information
represented in FERN.

EXTENSIBILITY

A layered approach promotes ROSE extensibility. A
typical ROSE application consists of the ROSE Kernel
Subsystem, the ROSE User Interface Subsystem, and a
layer of application-unique software (see Figure 6).
The ROSE Kernel and User Interface Subsystems were
designed using Ada generic code templates extensively.
These generic code templates make it easy to add new
user interfaces, scheduling algorithms, and scheduling
heuristics to the ROSE Kernel Subsystem. Replacing
the scheduling algorithms and heuristics is a matter of

 8

using the data structures, functions, and procedures
which define the algorithms and heuristics, and
recompiling and linking the code with the ROSE
Kernel Subsystem.

Several ROSE scheduling algorithms have been
implemented, and we plan to develop and implement
additional algorithms. Algorithms may be written in
Ada or other programming languages such as C, C++,
or FORTRAN. ROSE’s principal algorithm is called
Earliest Possible and is designed to create a conflict-
free schedule by placing each request at its earliest
possible start time.

New ROSE scheduling algorithms can be implemented
using the basic generic scheduling template and the
four basic scheduling components shown in Figure 7.
The Figure 7 components with the thick shaded border
are Ada generic components used to instantiate a new
scheduling algorithm.

ROSE Kernel Subsystem services include: allocating
and de-allocating resources, finding event start times
and

durations, detecting event and resource conflicts,
finding events to schedule, adding events to the
schedule, removing events, processing constraints, and
FERN parsing. These services are available to the
application layer for creating and modifying schedules.

Using ASCII representations for external data
contributes greatly to ROSE’s extensibility. Data
translation utilities can be easily written to translate
scheduling information from one application to
another. In the ROSE application for GRO, a Practical
Extraction and Report Language (PERL) script
extracted scheduling information from an electronic

version of a printed report and then re-formatted the
data to produce FERN files.

Scheduler for Operational Resources Through an
Interactive Module - a Case Study in ROSE
Extensibility

The Scheduler for Operational Resources Through an
Interactive Module (SORTIM) family of schedulers
was developed to automate flight and academic
training scheduling for Air Force pilots. It serves as an
example of extending an existing software system to
meet the requirements of an entirely different
application or domain. The SORTIM systems were

Ground Station

User Data

Capture
Facility

Space Network

Control System
Control Center

SN Elements

SN Support Elements

Customer Facility

SNCS Direct Interfaces

Other Interfaces

Legend:

Flight

Dynamics
Facility

GRO (Gamma Ray Observatory)

 Spacecraft

TDRSS West

GR0 Mission OP

MOC

TDRSS EastTDRSS Zone

NASA Communications Network

Shuttle

Figure 3. The TDRSS Communications Network Used by GRO

9

prototypes developed for the USAF to automate
scheduling activities for training student pilots.
Resources included aircraft, flight simulators, students,
instructors, and classrooms. ROSE reuse provided to
the SORTIM development a substantial cost savings
and a leap in technology. The SORTIM/ROSE
schedulers provided advanced functionality that was
not available in previous training schedulers.

Three SORTIM schedulers were developed using
ROSE. Two schedulers required new scheduling
algorithms and custom user interfaces. The third

scheduler required only minimal application-layer
changes. The first system automatically allocated jets
and simulators for T-37 Specialized Undergraduate
Pilot Training (SUPT). The second system addressed
planning, scheduling, and training management needs
for the KC-135 Pilot/ Navigator/Boom academic,
flight, and simulator training programs.

Application-unique scheduling decisions were coded
into the scheduling framework shown in Figure 7. In
particular, functions were supplied to "Pick Next
Event”, "Pick Start Time," and "Try to Remove

10

TDRS/GRO
LOW GAIN ANTENNA

ATTITUDE DEPENDENT
POTENTIAL CONTACT TIMES

PREDICTION START TIME 940725.000000
PREDICTION STOP TIME 940725.150000

TDRS ANTENNA TYPE - SINGLE ACCESS

GRO INITIAL ATTITUDE (GCI J2000)

QUATERNIONS 0.6430506 0.0454778 0.7405362 0.1897983

ACADS AXES X-AXIS Y-AXIS Z-AXIS
---------- ------ ------ ------
RIGHT ASCENSION 106.55 256.45 349.67
DECLINATION 69.25 18.15 9.72

CONTACT CONTACT CONTACT MAXIMUM
INDEX START STOP DURAT TDRS LGA ELEVATION
NUM YYMMDD.HHMMSS YYMMDD.HHMMSS (MIN) ID ID ANGLE
----- ------------- ------------- ------- ---- ---- --------
 1 940725.000000 940725.002200 22.00 TD-5 2 35.88
 2 940725.010400 940725.020100 57.00 TD-5 2 36.70
 3 940725.024300 940725.034000 57.00 TD-5 2 46.17
 4 940725.042300 940725.052000 57.00 TD-5 2 63.37
 5 940725.060300 940725.070100 58.00 TD-5 2 83.55
 6 940725.074400 940725.084100 57.00 TD-5 1 101.35
 7 940725.092400 940725.102100 57.00 TD-5 1 78.74
 8 940725.110400 940725.120100 57.00 TD-5 2 105.04
 9 940725.124400 940725.132200 38.00 TD-5 1 58.85
10 940725.142300 940725.144400 21.00 TD-5 1 43.16

Figure 4. Tabular Data Representing TDRSS Contacts with the GRO Spacecraft

--
--| FERN Timegraph Data Structure representing
--| FDF provided UAV Data for Calendar Mark
--| DAY 206, MONDAY 07-25-1994
--
Timegraph GRO_TDRSS_WEST_UAV_CONTACTS is
 (Create starting from Calendar Mark
 until 1994/7/25/00:00 off, until 1994/7/25/00:22 on, --Contact#1 22 min
 until 1994/7/25/01:04 off, until 1994/7/25/02:01 on, --Contact#2 57 min
 until 1994/7/25/02:43 off, until 1994/7/25/03:40 on, --Contact#3 57 min
 until 1994/7/25/04:23 off, until 1994/7/25/05:20 on, --Contact#4 57 min
 until 1994/7/25/06:03 off, until 1994/7/25/07:01 on, --Contact#5 58 min
 until 1994/7/25/07:44 off, until 1994/7/25/08:41 on, --Contact#6 57 min
 until 1994/7/25/09:24 off, until 1994/7/25/10:21 on, --Contact#7 57 min
 until 1994/7/25/11:04 off, until 1994/7/25/12:01 on, --Contact#8 57 min
 until 1994/7/25/12:44 off, until 1994/7/25/13:22 on, --Contact#9 38 min
 until 1994/7/25/14:23 off, until 1994/7/25/14:44 on, --Contact#10 21 min
 until forever off)
End Timegraph

--| TDRSS WEST MAR FERN Resource Data Structure

Resource TDRSS_WEST_MAR is
 (Forever 1) with min gap 2 minutes
--| Flight Operations Heuristic 2 minute
--| minimum event separation mandatory
End Resource

--
--| TDRSS WEST MAR GRO AVAILABILITY
--| FERN Linked Resource Data Structure
--

Resource TDRSS_WEST_MAR_GRO_AVAILABILITY is
 (Link GRO_TDRSS_WEST_UAV_CONTACTS and TDRSS_WEST_MAR)

11

End Resource

Figure 5. FERN Data Generated from Figure 4 Data

Application Unique
Software

ROSE User Interface
Subsystem

ROSE Kernel
Subsystem

Application unique
scheduling heuristics, goals

and algorithms
Application unique displays

Software such as view period data management,
planning and scheduling aids, network

communication software, and database management
systems

PICK NEXT EVENT

DETERMINE EVENT,
CONSTRAINTS,

DURATIONS
(FLEXIBLE)

START TIMES ?
TRY TO REMOVE

CONFLICT

PICK START TIME SUCCESS

UNSCHEDULE
IF NECESSARY,
NOTE FAILURE

ADD TO SCHEDULE,
ALLOCATE

RESOURCES,
NOTE SUCCESS

LEGEND: Ada GENERIC

NOYES

YES

UPDATE
SUPPLEMENTAL
DATA STRUCTURES

NO

CHOOSE FROM
FLEXIBILITIES

Figure 6. ROSE Layered Architecture

12

Conflict" in the generic scheduling templates. These
changes were made without modifying the ROSE
Kernel Subsystem (see Figure 6). The FERN language
was used to represent basic scheduling rules, schedule
requests, activities, steps, resources, and temporal
constraints. Also, the Transportable Applications
Environment Plus (TAE+) Graphical User Interface
(GUI) Builder/Code Generator was used to create the
new GUI, which contained buttons, pull-down menus,
and selection lists.

ROSE reutilization in this entirely different application
demonstrated that the "software building blocks" must
be re-configurable. In this case study, the existing GUI
was discarded, and a custom user interface was built to
look like existing forms. The ROSE layered
architecture simplified this process. Additional code
implemented some scheduling rules and resources that
could not be represented in FERN and incorporated
application-unique scheduling decisions.

PORTABILITY

The programming language is an important factor in
facilitating software portability across different
workstations and computers. ROSE is written in Ada
(ANSI/MIL-STD-1815A-1983). Ada has a single
language reference manual, and all Ada compilers
must be validated to ensure conformance to the
standard semantics of the language. However, the
standard Ada environment does not extend to
operating system interfaces, so we followed the POSIX
standard using Ada bindings. The ROSE user
interaction is managed by the TAE+ User Interface
Management System (UIMS), which uses X and Motif.
TAE+ generates Ada code and has Ada bindings in its
libraries. We have compiled the ROSE Kernel
Subsystem on a number of different hardware
platforms and operating systems, including: Sun 3,
Sun SPARC (SunOS 4.1 and Solaris 2.3), HP PA-
RISC, DEC VAX/VMS, and DEC Alpha (OSF/1 and
OpenVMS).

Writing portable code can be done without
implementing arbitrary limits, such as fixed sizes for
arrays and fixed fields for input data. Besides
supporting traditional data structures, such as trees and
linked lists, Ada provides flexible constructs, including
variant records, discriminant records, unconstrained
arrays, and pointers (access types), which remove
limits on problem type and size without restricting
portability. Generic packages and generic procedures
promote both portability and reusability, especially for

general purpose data handling routines, such as linked
lists. As discussed previously, the heart of the
scheduling kernel is a generic procedure. The user can
create many different schedules by trying different
scheduling algorithms and heuristics.

All external data formats used by ROSE have an
ASCII representation, which facilitates portability,
debugging, and extensibility. Portability is enhanced
because different hardware platforms, particularly
those with different binary representations, can still
exchange scheduling information. In one case, we
augmented the ASCII format with a binary format to
improve performance. However, if the binary format
file does not exist, ROSE automatically uses the ASCII
format file. Thus, both performance and portability are
maintained. Debugging is enhanced because a user
can read and understand the external data residing on
disk.

Porting from VMS to UNIX - a Case Study in ROSE
Portability

In 1991, ROSE was ported from a VMS workstation to
a UNIX workstation. We had developed most of ROSE
on a VAX 11/780, and then later on VAXstations,
using VMS. For the port to UNIX, most code changes
resulted from the foreign language bindings (POSIX,
X, and TAE+), because not all of the interface pragmas
were part of the Ada standard. Also, the bindings
themselves had to be changed. Other changes were
required to accommodate differences in file name and
directory structures on different platforms.

Presently, we ensure portability with a common source
tree (except for foreign language bindings) for VMS
and SunOS. Ada does not define a preprocessor for
conditional compilation, so all code must work for both
platforms. To maintain portability, all new code
changes must compile cleanly on both platforms, and
both executables must pass all regression tests. In
general, all ROSE ports to various platforms have gone
smoothly.

FUTURE DIRECTION FOR ROSE

ROSE has been proposed as the core scheduling
component for the upcoming replacement of the
Service Planning Segment (SPS) of the NCC at
Goddard Space Flight Center (GSFC). The SPS is the
software suite responsible for scheduling and
coordinating TDRSS support. System planners at
GSFC are currently evaluating candidate software and
hardware components for the SPS replacement.

Figure 7. ROSE General Scheduling Framework

 13

Because of its adherence to open systems standards, we
are confident ROSE will run on the chosen open-
system architecture. ROSE provides the flexibility to
support the dynamic requirements of the SPS. The
FERN language is well suited for use in an
environment where scheduling needs change
frequently. Additionally, ROSE’s dynamic allocation
(using linked lists) accommodates growth. The SPS
replacement requires specialized scheduling algorithms
and heuristics, as well as a custom user interface.
Using an extensible design facilitates the addition of
new code into ROSE.

CONCLUSION

ROSE has been demonstrated to be reusable for solving
a broad range of scheduling problems, including
spacecraft, TDRSS, and pilot training scheduling. A
layered, reusable design has resulted in a system that
can be tailored to schedule a large number of event
requests efficiently in a variety of applications. ROSE
reuse reduces the time to develop a custom scheduling
system.

CITED REFERENCES

[Brouchard, 1992] Brouchard, Intelligent Training
Management System Scheduler (ITMSS), Briefing
Material, Miami Valley Research Institute, Dayton,
OH (June 1992).

[Moe, et al., 1994] Karen Moe, Space Network
Flexible Scheduling Enhancements, White Paper,
Goddard Space Flight Center, Greenbelt, MD (March
7, 1994).

[Weinstein, 1993] Stuart Weinstein, Request-Oriented
Scheduling Engine User's Guide, Goddard Space
Flight Center, Greenbelt, MD (May 1993).

